USN	
-----	--

BCS303

Third Semester B.E./B.Tech. Degree Examination, June/July 2024 **Operating Systems**

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Explain multi programming and time sharing systems.	07	L3	CO1
	b.	Explain the dual mode operation in operating systems with a neat block	07	L3	CO1
	c.	diagram. What are virtual machines? Explain with a neat figure.	06	L3	CO1
	C.	OR	00	130	
0.2		What are system calls? Briefly explain different types of system calls.	07	L3	CO1
Q.2	a.		07	L3	CO1
	b.	List and explain the services provided by OS for the user in efficient operation of a system.			
	c.	What are micro kernels? With a neat figure, explain the micro kernel structure? Point out their advantages over layered approach.	06	L3	CO1
		Module – 2			
Q.3	a.	What is process? Explain different states of the process with state transition diagram and process control block.	08	L2	CO2
	-		06	Т 2	CO2
	b.	What is Interprocess communication? Explain.	0.000	L2	
	c.	What is thread? How it is different from process? Discuss various multithreading models with suitable illustration.	06	L2	CO2
		OR			
Q.4	a.	Consider the following processes where smaller the number has higher priority. Draw the Gantt chart compute the waiting time and average turnaround time by using FCFS, SRTF, preemptive priority scheduling. Processes Arrival times Burst time Priority	12	L2	CO2
	b. (P ₃ 3 3 6 5 3 Discuss the benefits of multithreaded programming. Explain the threading issues in detail.	08	L2	CO2
		Module – 3			
Q.5	a.	What are the requirements that must be satisfied by a solution to the critical section problem? Illustrate with an example the Peterson's solution for critical section problem.	08	L3	CO3
	b.	What is critical section problem and solutions to the problem? How to solve using semaphores?	06	L3	CO3
	c.	Explain the classical bounded buffer problem of synchronization. Give the solution	06	L3	CO3
		OR			
Q.6	a.	What is dead lock? What are the necessary conditions for the deadlock to	10	L3	CO3
		occur? How to recover from deadlocks.			

																	BCS303			
																Y			1	
	b.	Assume that						es P	o to	P ₄ a	and 4	4 typ	es c	of re	sources	s. At tim	ie 10	L3	CO3	
		T_0 the system	m h	as fo	llov	ving	:						,A) ¥ .					
		Duanagaa	Processes Allocation Max Available																	
		Processes	A	BC		D	A			D	A	B	C	D						
		P_0	0	1	1	0	$\frac{\Lambda}{0}$	2	1 1	0	1	3	1	0						
		P_1	1	4	4	1	1	6	5	2		0				4				
		P_2	1	3	6	5	2	3	6	6						Car				
		P_3	0	6	3	2	0	6	5	2										
		P ₄	0	0	1	4	0	6	5	6					1					
								A 400							Assault	b				
		Apply the b	ank	ers a	ılgoı	ithn	1 to	ans	wer	foll	owir	ıg:			0					
		(i) What is							itrix	?				4	7					
		(ii) Is the s	yste	m u	1 a s	ate s	state	1 ()) am	mi 170	a aa	. i+ 1		ronte	A2					
		(iii) If the r	eque	est 1	rom	F1(2	, 1,	1, (i) ai	IIVC	s cai	1111	ic gi	anic	a:		=			
					1			Mo	dul	e – 4	4	4								
Q.7	a.	What is pag	ging	? Di	ffere	ntia	te b					nd s	egn	nenta	ation.		06	L3	CO4	
~~	b.															stem an	nd 08	L3	CO4	
		What are TLB? Explain TLB in detail with a simple paging system and neat diagram.																		
	c.	Given the n																L3	CO4	
		first fit, best fit and worst fit algorithms to place 212K, 417K, 112K and										nd]								
		426K.						96	2						y'					
0.0		***	C	140	117:4	1	A-4	W.	OR		1.	i +1.			in hond	11:00 000	-0 00	L3	CO4	
Q.8	a.	What is page fault? With a neat diagram, explain the steps in handling page fault.													ge 08	L3	CO4			
	b.		Illustrate how demand paging affects system performance. What is											is 06	L3	CO4				
	υ.	thrashing how it can be controlled?)			
	c.	Consider the following sequence:												06	L3	CO4				
		7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1																		
		Assuming frame size of 4, apply LRU, FIFO and optimal algorithm to find													nd					
¥		the page faults. Find out which algorithm is most efficiency.																		
	1		·	~1		•• •		- 3 - 20	dul			C (°1					0.0		COS	
Q.9	a.	Explain var	10US	file	attr	1but	es a	nd c	per	at101	ns o	file	S.				06	L3	CO5	
	L	With a neat diagram, explain two level and tree structured directory										ry 08	L3	COS						
	b.	structure.											ry Uo		CO					
	c.												06	L3	COS					
	· .	what is the Explain the mounting.														CO				
			7	0				(OR	2										
Q.10	a.	Give the fo																L3	COS	
		head initially at 50 and ending at track 199. What is the total disk travelled												CO						
		by the disk drum to satisfy request using FCFS, SSTF, LOOK and CLOOK																		
		algorithms.					7	_								_				
	b.	Explain the	acc	ess	matr	ix n	ode	lof	imp	lem	enti	ng p	rote	ectio	n on O	S.	08	L3	COS	
	b.	Explain the access matrix model of implementing protection on OS.										08	L3							

* * * * *